VSHUFF32x4/VSHUFF64x2/VSHUFI32x4/VSHUFI64x2—Shuffle Packed Values at 128-bit Granularity

Opcode/Instruction Op /En 64/32 bit Mode Support CPUID Feature Flag Description

EVEX.NDS.256.66.0F3A.W0 23 /r ib

VSHUFF32X4 ymm1{k1}{z}, ymm2, ymm3/m256/m32bcst, imm8

FV V/V AVX512VL AVX512F Shuffle 128-bit packed single-precision floating-point values selected by imm8 from ymm2 and ymm3/m256/m32bcst and place results in ymm1 subject to writemask k1.

EVEX.NDS.512.66.0F3A.W0 23 /r ib

VSHUFF32x4 zmm1{k1}{z}, zmm2, zmm3/m512/m32bcst, imm8

FV V/V AVX512F Shuffle 128-bit packed single-precision floating-point values selected by imm8 from zmm2 and zmm3/m512/m32bcst and place results in zmm1 subject to writemask k1.

EVEX.NDS.256.66.0F3A.W1 23 /r ib

VSHUFF64X2 ymm1{k1}{z}, ymm2, ymm3/m256/m64bcst, imm8

FV V/V AVX512VL AVX512F Shuffle 128-bit packed double-precision floating-point values selected by imm8 from ymm2 and ymm3/m256/m64bcst and place results in ymm1 subject to writemask k1.

EVEX.NDS.512.66.0F3A.W1 23 /r ib

VSHUFF64x2 zmm1{k1}{z}, zmm2, zmm3/m512/m64bcst, imm8

FV V/V AVX512F Shuffle 128-bit packed double-precision floating-point values selected by imm8 from zmm2 and zmm3/m512/m64bcst and place results in zmm1 subject to writemask k1.

EVEX.NDS.256.66.0F3A.W0 43 /r ib

VSHUFI32X4 ymm1{k1}{z}, ymm2, ymm3/m256/m32bcst, imm8

FV V/V AVX512VL AVX512F Shuffle 128-bit packed double-word values selected by imm8 from ymm2 and ymm3/m256/m32bcst and place results in ymm1 subject to writemask k1.

EVEX.NDS.512.66.0F3A.W0 43 /r ib

VSHUFI32x4 zmm1{k1}{z}, zmm2, zmm3/m512/m32bcst, imm8

FV V/V AVX512F Shuffle 128-bit packed double-word values selected by imm8 from zmm2 and zmm3/m512/m32bcst and place results in zmm1 subject to writemask k1.

EVEX.NDS.256.66.0F3A.W1 43 /r ib

VSHUFI64X2 ymm1{k1}{z}, ymm2, ymm3/m256/m64bcst, imm8

FV V/V AVX512VL AVX512F Shuffle 128-bit packed quad-word values selected by imm8 from ymm2 and ymm3/m256/m64bcst and place results in ymm1 subject to writemask k1.

EVEX.NDS.512.66.0F3A.W1 43 /r ib

VSHUFI64x2 zmm1{k1}{z}, zmm2, zmm3/m512/m64bcst, imm8

FV V/V AVX512F Shuffle 128-bit packed quad-word values selected by imm8 from zmm2 and zmm3/m512/m64bcst and place results in zmm1 subject to writemask k1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Description

256-bit Version: Moves one of the two 128-bit packed single-precision floating-point values from the first source operand (second operand) into the low 128-bit of the destination operand (first operand); moves one of the two packed 128-bit floating-point values from the second source operand (third operand) into the high 128-bit of the destination operand. The selector operand (third operand) determines which values are moved to the destination operand.

512-bit Version: Moves two of the four 128-bit packed single-precision floating-point values from the first source operand (second operand) into the low 256-bit of each double qword of the destination operand (first operand); moves two of the four packed 128-bit floating-point values from the second source operand (third operand) into the high 256-bit of the destination operand. The selector operand (third operand) determines which values are moved to the destination operand.

The first source operand is a vector register. The second source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a vector register.

The writemask updates the destination operand with the granularity of 32/64-bit data elements.

Operation

Select2(SRC, control) {

CASE (control[0]) OF

0:

TMP (cid:197) SRC[127:0];

1:

TMP (cid:197) SRC[255:128];

ESAC;

RETURN TMP

}

Select4(SRC, control) {

CASE (control[1:0]) OF

0:

TMP (cid:197) SRC[127:0];

1:

TMP (cid:197) SRC[255:128];

2:

TMP (cid:197) SRC[383:256];

3:

TMP (cid:197) SRC[511:384];

ESAC;

RETURN TMP

}

VSHUFF32x4 (EVEX versions)

(KL, VL) = (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 32

IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] (cid:197) SRC2[31:0]

ELSE TMP_SRC2[i+31:i] (cid:197) SRC2[i+31:i]

FI;

ENDFOR;

IF VL = 256

TMP_DEST[127:0] (cid:197) Select2(SRC1[255:0], imm8[0]);

TMP_DEST[255:128] (cid:197) Select2(SRC2[255:0], imm8[1]);

FI;

IF VL = 512

TMP_DEST[127:0] (cid:197) Select4(SRC1[511:0], imm8[1:0]);

TMP_DEST[255:128] (cid:197) Select4(SRC1[511:0], imm8[3:2]);

TMP_DEST[383:256] (cid:197) Select4(TMP_SRC2[511:0], imm8[5:4]);

TMP_DEST[511:384] (cid:197) Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+31:i] (cid:197) TMP_DEST[i+31:i]

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+31:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

THEN DEST[i+31:i] (cid:197) 0

FI;

FI;

ENDFOR

DEST[MAX_VL-1:VL] (cid:197) 0

VSHUFF64x2 (EVEX 512-bit version)

(KL, VL) = (4, 256), (8, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 64

IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] (cid:197) SRC2[63:0]

ELSE TMP_SRC2[i+63:i] (cid:197) SRC2[i+63:i]

FI;

ENDFOR;

IF VL = 256

TMP_DEST[127:0] (cid:197) Select2(SRC1[255:0], imm8[0]);

TMP_DEST[255:128] (cid:197) Select2(SRC2[255:0], imm8[1]);

FI;

IF VL = 512

TMP_DEST[127:0] (cid:197) Select4(SRC1[511:0], imm8[1:0]);

TMP_DEST[255:128] (cid:197) Select4(SRC1[511:0], imm8[3:2]);

TMP_DEST[383:256] (cid:197) Select4(TMP_SRC2[511:0], imm8[5:4]);

TMP_DEST[511:384] (cid:197) Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 64

IF k1[j] OR *no writemask*

THEN DEST[i+63:i] (cid:197) TMP_DEST[i+63:i]

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+63:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

THEN DEST[i+63:i] (cid:197)(cid:3)0

FI

FI;

ENDFOR

DEST[MAX_VL-1:VL] (cid:197) 0

VSHUFI32x4 (EVEX 512-bit version)

(KL, VL) = (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 32

IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+31:i] (cid:197) SRC2[31:0]

ELSE TMP_SRC2[i+31:i] (cid:197) SRC2[i+31:i]

FI;

ENDFOR;

IF VL = 256

TMP_DEST[127:0] (cid:197) Select2(SRC1[255:0], imm8[0]);

TMP_DEST[255:128] (cid:197) Select2(SRC2[255:0], imm8[1]);

FI;

IF VL = 512

TMP_DEST[127:0] (cid:197) Select4(SRC1[511:0], imm8[1:0]);

TMP_DEST[255:128] (cid:197) Select4(SRC1[511:0], imm8[3:2]);

TMP_DEST[383:256] (cid:197) Select4(TMP_SRC2[511:0], imm8[5:4]);

TMP_DEST[511:384] (cid:197) Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+31:i] (cid:197) TMP_DEST[i+31:i]

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+31:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

THEN DEST[i+31:i] (cid:197) 0

FI

FI;

ENDFOR

DEST[MAX_VL-1:VL] (cid:197) 0

VSHUFI64x2 (EVEX 512-bit version)

(KL, VL) = (4, 256), (8, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 64

IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] (cid:197) SRC2[63:0]

ELSE TMP_SRC2[i+63:i] (cid:197) SRC2[i+63:i]

FI;

ENDFOR;

IF VL = 256

TMP_DEST[127:0] (cid:197) Select2(SRC1[255:0], imm8[0]);

TMP_DEST[255:128] (cid:197) Select2(SRC2[255:0], imm8[1]);

FI;

IF VL = 512

TMP_DEST[127:0] (cid:197) Select4(SRC1[511:0], imm8[1:0]);

TMP_DEST[255:128] (cid:197) Select4(SRC1[511:0], imm8[3:2]);

TMP_DEST[383:256] (cid:197) Select4(TMP_SRC2[511:0], imm8[5:4]);

TMP_DEST[511:384] (cid:197) Select4(TMP_SRC2[511:0], imm8[7:6]);

FI;

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 64

IF k1[j] OR *no writemask*

THEN DEST[i+63:i] (cid:197) TMP_DEST[i+63:i]

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+63:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

THEN DEST[i+63:i] (cid:197)(cid:3)0

FI

FI;

ENDFOR

DEST[MAX_VL-1:VL] (cid:197) 0

Intel C/C++ Compiler Intrinsic Equivalent

VSHUFI32x4 __m512i _mm512_shuffle_i32x4(__m512i a, __m512i b, int imm);

VSHUFI32x4 __m512i _mm512_mask_shuffle_i32x4(__m512i s, __mmask16 k, __m512i a, __m512i b, int imm);

VSHUFI32x4 __m512i _mm512_maskz_shuffle_i32x4( __mmask16 k, __m512i a, __m512i b, int imm);

VSHUFI32x4 __m256i _mm256_shuffle_i32x4(__m256i a, __m256i b, int imm);

VSHUFI32x4 __m256i _mm256_mask_shuffle_i32x4(__m256i s, __mmask8 k, __m256i a, __m256i b, int imm);

VSHUFI32x4 __m256i _mm256_maskz_shuffle_i32x4( __mmask8 k, __m256i a, __m256i b, int imm);

VSHUFF32x4 __m512 _mm512_shuffle_f32x4(__m512 a, __m512 b, int imm);

VSHUFF32x4 __m512 _mm512_mask_shuffle_f32x4(__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);

VSHUFF32x4 __m512 _mm512_maskz_shuffle_f32x4( __mmask16 k, __m512 a, __m512 b, int imm);

VSHUFI64x2 __m512i _mm512_shuffle_i64x2(__m512i a, __m512i b, int imm);

VSHUFI64x2 __m512i _mm512_mask_shuffle_i64x2(__m512i s, __mmask8 k, __m512i b, __m512i b, int imm);

VSHUFI64x2 __m512i _mm512_maskz_shuffle_i64x2( __mmask8 k, __m512i a, __m512i b, int imm);

VSHUFF64x2 __m512d _mm512_shuffle_f64x2(__m512d a, __m512d b, int imm);

VSHUFF64x2 __m512d _mm512_mask_shuffle_f64x2(__m512d s, __mmask8 k, __m512d a, __m512d b, int imm);

VSHUFF64x2 __m512d _mm512_maskz_shuffle_f64x2( __mmask8 k, __m512d a, __m512d b, int imm);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4NF.

#UD If EVEX.L’L = 0 for VSHUFF32x4/VSHUFF64x2.