VPMOVDW/VPMOVSDW/VPMOVUSDW—Down Convert DWord to Word

Opcode/Instruction Op /En 64/32 bit Mode Support CPUID Feature Flag Description

EVEX.128.F3.0F38.W0 33 /r

VPMOVDW xmm1/m64 {k1}{z}, xmm2

HVM V/V

AVX512VL

AVX512F

Converts 4 packed double-word integers from xmm2 into 4 packed word integers in xmm1/m64 with truncation under writemask k1.

EVEX.128.F3.0F38.W0 23 /r

VPMOVSDW xmm1/m64 {k1}{z}, xmm2

HVM V/V

AVX512VL

AVX512F

Converts 4 packed signed double-word integers from xmm2 into 4 packed signed word integers in ymm1/m64 using signed saturation under writemask k1.

EVEX.128.F3.0F38.W0 13 /r

VPMOVUSDW xmm1/m64 {k1}{z}, xmm2

HVM V/V

AVX512VL

AVX512F

Converts 4 packed unsigned double-word integers from xmm2 into 4 packed unsigned word integers in xmm1/m64 using unsigned saturation under writemask k1.

EVEX.256.F3.0F38.W0 33 /r

VPMOVDW xmm1/m128 {k1}{z}, ymm2

HVM V/V

AVX512VL

AVX512F

Converts 8 packed double-word integers from ymm2 into 8 packed word integers in xmm1/m128 with truncation under writemask k1.

EVEX.256.F3.0F38.W0 23 /r

VPMOVSDW xmm1/m128 {k1}{z}, ymm2

HVM V/V

AVX512VL

AVX512F

Converts 8 packed signed double-word integers from ymm2 into 8 packed signed word integers in xmm1/m128 using signed saturation under writemask k1.

EVEX.256.F3.0F38.W0 13 /r

VPMOVUSDW xmm1/m128 {k1}{z}, ymm2

HVM V/V

AVX512VL

AVX512F

Converts 8 packed unsigned double-word integers from ymm2 into 8 packed unsigned word integers in xmm1/m128 using unsigned saturation under writemask k1.

EVEX.512.F3.0F38.W0 33 /r

VPMOVDW ymm1/m256 {k1}{z}, zmm2

HVM V/V AVX512F Converts 16 packed double-word integers from zmm2 into 16 packed word integers in ymm1/m256 with truncation under writemask k1.

EVEX.512.F3.0F38.W0 23 /r

VPMOVSDW ymm1/m256 {k1}{z}, zmm2

HVM V/V AVX512F Converts 16 packed signed double-word integers from zmm2 into 16 packed signed word integers in ymm1/m256 using signed saturation under writemask k1.

EVEX.512.F3.0F38.W0 13 /r

VPMOVUSDW ymm1/m256 {k1}{z}, zmm2

HVM V/V AVX512F Converts 16 packed unsigned double-word integers from zmm2 into 16 packed unsigned word integers in ymm1/m256 using unsigned saturation under writemask k1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
HVM ModRM:r/m (w) ModRM:reg (r) NA NA

Description

VPMOVDW down converts 32-bit integer elements in the source operand (the second operand) into packed words using truncation. VPMOVSDW converts signed 32-bit integers into packed signed words using signed saturation. VPMOVUSDW convert unsigned double-word values into unsigned word values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.

Down-converted word elements are written to the destination operand (the first operand) from the least-significant word. Word elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:256/128/64) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVDW instruction (EVEX encoded versions) when dest is a register

(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 16

m (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+15:i] (cid:197) TruncateDoubleWordToWord (SRC[m+31:m])

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+15:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

DEST[i+15:i] (cid:197) 0

FI

FI;

ENDFOR

DEST[MAX_VL-1:VL/2] (cid:197) 0;

VPMOVDW instruction (EVEX encoded versions) when dest is memory

(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 16

m (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+15:i] (cid:197) TruncateDoubleWordToWord (SRC[m+31:m])

ELSE

*DEST[i+15:i] remains unchanged*

; merging-masking

FI;

ENDFOR

VPMOVSDW instruction (EVEX encoded versions) when dest is a register

(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 16

m (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+15:i] (cid:197) SaturateSignedDoubleWordToWord (SRC[m+31:m])

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+15:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

DEST[i+15:i] (cid:197) 0

FI

FI;

ENDFOR

DEST[MAX_VL-1:VL/2] (cid:197) 0;

VPMOVSDW instruction (EVEX encoded versions) when dest is memory

(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 16

m (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+15:i] (cid:197) SaturateSignedDoubleWordToWord (SRC[m+31:m])

ELSE

*DEST[i+15:i] remains unchanged*

; merging-masking

FI;

ENDFOR

VPMOVUSDW instruction (EVEX encoded versions) when dest is a register

(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 16

m (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+15:i] (cid:197) SaturateUnsignedDoubleWordToWord (SRC[m+31:m])

ELSE

IF *merging-masking*

; merging-masking

THEN *DEST[i+15:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

DEST[i+15:i] (cid:197) 0

FI

FI;

ENDFOR

DEST[MAX_VL-1:VL/2] (cid:197) 0;

VPMOVUSDW instruction (EVEX encoded versions) when dest is memory

(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j (cid:197) 0 TO KL-1

i (cid:197) j * 16

m (cid:197) j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+15:i] (cid:197) SaturateUnsignedDoubleWordToWord (SRC[m+31:m])

ELSE

*DEST[i+15:i] remains unchanged*

; merging-masking

FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalents

VPMOVDW __m256i _mm512_cvtepi32_epi16( __m512i a);

VPMOVDW __m256i _mm512_mask_cvtepi32_epi16(__m256i s, __mmask16 k, __m512i a);

VPMOVDW __m256i _mm512_maskz_cvtepi32_epi16( __mmask16 k, __m512i a);

VPMOVDW void _mm512_mask_cvtepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);

VPMOVSDW __m256i _mm512_cvtsepi32_epi16( __m512i a);

VPMOVSDW __m256i _mm512_mask_cvtsepi32_epi16(__m256i s, __mmask16 k, __m512i a);

VPMOVSDW __m256i _mm512_maskz_cvtsepi32_epi16( __mmask16 k, __m512i a);

VPMOVSDW void _mm512_mask_cvtsepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);

VPMOVUSDW __m256i _mm512_cvtusepi32_epi16 __m512i a);

VPMOVUSDW __m256i _mm512_mask_cvtusepi32_epi16(__m256i s, __mmask16 k, __m512i a);

VPMOVUSDW __m256i _mm512_maskz_cvtusepi32_epi16( __mmask16 k, __m512i a);

VPMOVUSDW void _mm512_mask_cvtusepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);

VPMOVUSDW __m128i _mm256_cvtusepi32_epi16(__m256i a);

VPMOVUSDW __m128i _mm256_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m256i b);

VPMOVUSDW __m128i _mm256_maskz_cvtusepi32_epi16( __mmask8 k, __m256i b);

VPMOVUSDW void _mm256_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m256i b);

VPMOVUSDW __m128i _mm_cvtusepi32_epi16(__m128i a);

VPMOVUSDW __m128i _mm_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m128i b);

VPMOVUSDW __m128i _mm_maskz_cvtusepi32_epi16( __mmask8 k, __m128i b);

VPMOVUSDW void _mm_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m128i b);

VPMOVSDW __m128i _mm256_cvtsepi32_epi16(__m256i a);

VPMOVSDW __m128i _mm256_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m256i b);

VPMOVSDW __m128i _mm256_maskz_cvtsepi32_epi16( __mmask8 k, __m256i b);

VPMOVSDW void _mm256_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m256i b);

VPMOVSDW __m128i _mm_cvtsepi32_epi16(__m128i a);

VPMOVSDW __m128i _mm_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m128i b);

VPMOVSDW __m128i _mm_maskz_cvtsepi32_epi16( __mmask8 k, __m128i b);

VPMOVSDW void _mm_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m128i b);

VPMOVDW __m128i _mm256_cvtepi32_epi16(__m256i a);

VPMOVDW __m128i _mm256_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m256i b);

VPMOVDW __m128i _mm256_maskz_cvtepi32_epi16( __mmask8 k, __m256i b);

VPMOVDW void _mm256_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m256i b);

VPMOVDW __m128i _mm_cvtepi32_epi16(__m128i a);

VPMOVDW __m128i _mm_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m128i b);

VPMOVDW __m128i _mm_maskz_cvtepi32_epi16( __mmask8 k, __m128i b);

VPMOVDW void _mm_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.
If EVEX.vvvv != 1111B.