Opcode/Instruction | Op/En | 64/32 -bit Mode | CPUID Feature Flag | Description |
---|---|---|---|---|
VEX.NDS.LZ.F2.0F38.W0 F5 /r PDEP r32a, r32b, r/m32 |
RVM | V/V | BMI2 | Parallel deposit of bits from r32b using mask in r/m32, result is writ-ten to r32a. |
VEX.NDS.LZ.F2.0F38.W1 F5 /r PDEP r64a, r64b, r/m64 |
RVM | V/N.E. | BMI2 | Parallel deposit of bits from r64b using mask in r/m64, result is writ-ten to r64a. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
PDEP uses a mask in the second source operand (the third operand) to transfer/scatter contiguous low order bits in the first source operand (the second operand) into the destination (the first operand). PDEP takes the low bits from the first source operand and deposit them in the destination operand at the corresponding bit locations that are set in the second source operand (mask). All other bits (bits not set in mask) in destination are set to zero.
SRC1
S31 S30 S29 S28 S27
S7
S6
S5
S4
S3
S2
S1
S0
SRC2
0
0
0
1
0
1
0
1
0
0
1
0
0
(mask)
DEST
0
0
0
0
0
0
0
0
0
S1
S0
S3
S2
bit 0
bit 31
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.
TEMP ← SRC1; MASK ← SRC2; DEST ← 0 ; m← 0, k← 0; DO WHILE m< OperandSize IF MASK[ m] = 1 THEN DEST[ m] ← TEMP[ k]; k ← k+ 1; FI m ← m+ 1; OD
None.
PDEP:
unsigned __int32 _pdep_u32(unsigned __int32 src, unsigned __int32 mask);
PDEP:
unsigned __int64 _pdep_u64(unsigned __int64 src, unsigned __int32 mask);
None
See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD | If VEX.W = 1. |